購買之前可享有免費試用 MLA-C01 考古題
在購買 Amazon MLA-C01 認證考試培訓資料之前,你還可以下載免費的 MLA-C01 考古題樣本作為試用,這樣你就可以自己判斷 Amazon MLA-C01 題庫資料是不是適合自己。在購買 Amazon MLA-C01 考古題之前,你可以去本網站瞭解更多的資訊,更好地瞭解這個網站。您會發現這是當前考古題提供者中的佼佼者,我們的 Amazon MLA-C01 題庫資源不斷被修訂和更新,具有很高的通過率。
我們正在盡最大努力為我們的廣大考生提供所有具備較高的速度和效率的服務,以節省你的寶貴時間,為你提供了大量的 Amazon MLA-C01 考試指南,包括考題及答案。有些網站在互聯網為你提供的最新的 Amazon MLA-C01 學習材料,而我們是唯一提供高品質的網站,為你提供優質的 Amazon MLA-C01 培訓資料,在最新 Amazon MLA-C01 學習資料和指導的幫助下,你可以第一次嘗試通過 Amazon MLA-C01 考試。
由專家確定真實有效的 MLA-C01 考古題
我們提供給大家關於 Amazon MLA-C01 認證考試的最新的題庫資料,Amazon MLA-C01 題庫資料都是根據最新的認證考試研發出來的,可以告訴大家最新的與 MLA-C01 考試相關的消息。Amazon MLA-C01 考試的大綱有什麼變化,以及 MLA-C01 考試中可能會出現的新題型,這些內容都包括在了資料中。所以,如果你想參加 Amazon MLA-C01 考試,最好利用我們 Amazon MLA-C01 題庫資料,因為只有這樣你才能更好地準備 MLA-C01 考試。
我們的題庫產品是由很多的資深IT專家利用他們的豐富的知識和經驗針對相關的 Amazon MLA-C01 認證考試研究出來的。所以你要是參加 Amazon MLA-C01 認證考試並且選擇我們的考古題,我們不僅可以保證為你提供一份覆蓋面很廣和品質很好的 Amazon MLA-C01 考試資料,來讓您做好準備來面對這個非常專業的 MLA-C01 考試,而且還幫你順利通過 Amazon MLA-C01 認證考試,拿到 AWS Certified Associate 證書。
購買後,立即下載 MLA-C01 題庫 (AWS Certified Machine Learning Engineer - Associate): 成功付款後, 我們的體統將自動通過電子郵箱將您已購買的產品發送到您的郵箱。(如果在12小時內未收到,請聯繫我們,注意:不要忘記檢查您的垃圾郵件。)
100%保證通過第一次 MLA-C01 考試
Amazon MLA-C01 考古題根據最新考試主題編訂,適合全球的考生使用,提高考生的通過率。幫助考生一次性順利通過 Amazon MLA-C01 考試,否則將全額退費,這一舉動保證考生利益不受任何的損失,還會為你提供一年的免費更新服務。
Amazon MLA-C01 題庫資料不僅可靠性強,而且服務也很好。我們的 Amazon MLA-C01 題庫的命中率高達100%,可以保證每個使用過 MLA-C01 題庫的人都順利通過考試。當然,這也並不是說你就完全不用努力了。你需要做的就是,認真學習 Amazon MLA-C01 題庫資料裏出現的所有問題。只有這樣,在 Amazon MLA-C01 考試的時候你才可以輕鬆應對。
這是唯一能供給你們需求的全部的 Amazon MLA-C01 認證考試相關資料的網站。利用我們提供的學習資料通過 MLA-C01 考試是不成問題的,而且你可以以很高的分數通過 Amazon MLA-C01 考試得到相關認證。
最新的 AWS Certified Associate MLA-C01 免費考試真題:
1. A company has trained an ML model in Amazon SageMaker. The company needs to host the model to provide inferences in a production environment.
The model must be highly available and must respond with minimum latency. The size of each request will be between 1 KB and 3 MB. The model will receive unpredictable bursts of requests during the day. The inferences must adapt proportionally to the changes in demand.
How should the company deploy the model into production to meet these requirements?
A) Deploy the model on an Amazon Elastic Container Service (Amazon ECS) cluster. Use ECS scheduled scaling that is based on the CPU of the ECS cluster.
B) Install SageMaker Operator on an Amazon Elastic Kubernetes Service (Amazon EKS) cluster. Deploy the model in Amazon EKS. Set horizontal pod auto scaling to scale replicas based on the memory metric.
C) Create a SageMaker real-time inference endpoint. Configure auto scaling. Configure the endpoint to present the existing model.
D) Use Spot Instances with a Spot Fleet behind an Application Load Balancer (ALB) for inferences. Use the ALBRequestCountPerTarget metric as the metric for auto scaling.
2. A company wants to reduce the cost of its containerized ML applications. The applications use ML models that run on Amazon EC2 instances, AWS Lambda functions, and an Amazon Elastic Container Service (Amazon ECS) cluster. The EC2 workloads and ECS workloads use Amazon Elastic Block Store (Amazon EBS) volumes to save predictions and artifacts.
An ML engineer must identify resources that are being used inefficiently. The ML engineer also must generate recommendations to reduce the cost of these resources.
Which solution will meet these requirements with the LEAST development effort?
A) Add cost allocation tags to the resources. Activate the tags in AWS Billing and Cost Management.
B) Check AWS CloudTrail event history for the creation of the resources.
C) Run AWS Compute Optimizer.
D) Create code to evaluate each instance's memory and compute usage.
3. A company is building a deep learning model on Amazon SageMaker. The company uses a large amount of data as the training dataset. The company needs to optimize the model's hyperparameters to minimize the loss function on the validation dataset.
Which hyperparameter tuning strategy will accomplish this goal with the LEAST computation time?
A) Random search
B) Hyperbaric!
C) Grid search
D) Bayesian optimization
4. Case study
An ML engineer is developing a fraud detection model on AWS. The training dataset includes transaction logs, customer profiles, and tables from an on-premises MySQL database. The transaction logs and customer profiles are stored in Amazon S3.
The dataset has a class imbalance that affects the learning of the model's algorithm. Additionally, many of the features have interdependencies. The algorithm is not capturing all the desired underlying patterns in the data.
Which AWS service or feature can aggregate the data from the various data sources?
A) Amazon DynamoDB
B) Amazon EMR Spark jobs
C) AWS Lake Formation
D) Amazon Kinesis Data Streams
5. An ML engineer needs to use an ML model to predict the price of apartments in a specific location.
Which metric should the ML engineer use to evaluate the model's performance?
A) F1 score
B) Accuracy
C) Area Under the ROC Curve (AUC)
D) Mean absolute error (MAE)
問題與答案:
問題 #1 答案: C | 問題 #2 答案: C | 問題 #3 答案: B | 問題 #4 答案: B | 問題 #5 答案: D |
123.194.180.* -
我簡直不能相信我第一次MLA-C01考試就成功的通過了,這要感謝我朋友給我推薦的Dealaprop網站的學習資料,給我帶來了很大的幫助。