100%保證通過第一次 Data-Engineer-Associate 考試
Amazon Data-Engineer-Associate 考古題根據最新考試主題編訂,適合全球的考生使用,提高考生的通過率。幫助考生一次性順利通過 Amazon Data-Engineer-Associate 考試,否則將全額退費,這一舉動保證考生利益不受任何的損失,還會為你提供一年的免費更新服務。
Amazon Data-Engineer-Associate 題庫資料不僅可靠性強,而且服務也很好。我們的 Amazon Data-Engineer-Associate 題庫的命中率高達100%,可以保證每個使用過 Data-Engineer-Associate 題庫的人都順利通過考試。當然,這也並不是說你就完全不用努力了。你需要做的就是,認真學習 Amazon Data-Engineer-Associate 題庫資料裏出現的所有問題。只有這樣,在 Amazon Data-Engineer-Associate 考試的時候你才可以輕鬆應對。
這是唯一能供給你們需求的全部的 Amazon Data-Engineer-Associate 認證考試相關資料的網站。利用我們提供的學習資料通過 Data-Engineer-Associate 考試是不成問題的,而且你可以以很高的分數通過 Amazon Data-Engineer-Associate 考試得到相關認證。
購買之前可享有免費試用 Data-Engineer-Associate 考古題
在購買 Amazon Data-Engineer-Associate 認證考試培訓資料之前,你還可以下載免費的 Data-Engineer-Associate 考古題樣本作為試用,這樣你就可以自己判斷 Amazon Data-Engineer-Associate 題庫資料是不是適合自己。在購買 Amazon Data-Engineer-Associate 考古題之前,你可以去本網站瞭解更多的資訊,更好地瞭解這個網站。您會發現這是當前考古題提供者中的佼佼者,我們的 Amazon Data-Engineer-Associate 題庫資源不斷被修訂和更新,具有很高的通過率。
我們正在盡最大努力為我們的廣大考生提供所有具備較高的速度和效率的服務,以節省你的寶貴時間,為你提供了大量的 Amazon Data-Engineer-Associate 考試指南,包括考題及答案。有些網站在互聯網為你提供的最新的 Amazon Data-Engineer-Associate 學習材料,而我們是唯一提供高品質的網站,為你提供優質的 Amazon Data-Engineer-Associate 培訓資料,在最新 Amazon Data-Engineer-Associate 學習資料和指導的幫助下,你可以第一次嘗試通過 Amazon Data-Engineer-Associate 考試。
由專家確定真實有效的 Data-Engineer-Associate 考古題
我們提供給大家關於 Amazon Data-Engineer-Associate 認證考試的最新的題庫資料,Amazon Data-Engineer-Associate 題庫資料都是根據最新的認證考試研發出來的,可以告訴大家最新的與 Data-Engineer-Associate 考試相關的消息。Amazon Data-Engineer-Associate 考試的大綱有什麼變化,以及 Data-Engineer-Associate 考試中可能會出現的新題型,這些內容都包括在了資料中。所以,如果你想參加 Amazon Data-Engineer-Associate 考試,最好利用我們 Amazon Data-Engineer-Associate 題庫資料,因為只有這樣你才能更好地準備 Data-Engineer-Associate 考試。
我們的題庫產品是由很多的資深IT專家利用他們的豐富的知識和經驗針對相關的 Amazon Data-Engineer-Associate 認證考試研究出來的。所以你要是參加 Amazon Data-Engineer-Associate 認證考試並且選擇我們的考古題,我們不僅可以保證為你提供一份覆蓋面很廣和品質很好的 Amazon Data-Engineer-Associate 考試資料,來讓您做好準備來面對這個非常專業的 Data-Engineer-Associate 考試,而且還幫你順利通過 Amazon Data-Engineer-Associate 認證考試,拿到 AWS Certified Data Engineer 證書。
購買後,立即下載 Data-Engineer-Associate 題庫 (AWS Certified Data Engineer - Associate (DEA-C01)): 成功付款後, 我們的體統將自動通過電子郵箱將您已購買的產品發送到您的郵箱。(如果在12小時內未收到,請聯繫我們,注意:不要忘記檢查您的垃圾郵件。)
最新的 AWS Certified Data Engineer Data-Engineer-Associate 免費考試真題:
1. A company uses Amazon RDS for MySQL as the database for a critical application. The database workload is mostly writes, with a small number of reads.
A data engineer notices that the CPU utilization of the DB instance is very high. The high CPU utilization is slowing down the application. The data engineer must reduce the CPU utilization of the DB Instance.
Which actions should the data engineer take to meet this requirement? (Choose two.)
A) Reboot the RDS DB instance once each week.
B) Use the Performance Insights feature of Amazon RDS to identify queries that have high CPU utilization. Optimize the problematic queries.
C) Modify the database schema to include additional tables and indexes.
D) Implement caching to reduce the database query load.
E) Upgrade to a larger instance size.
2. A company stores customer data in an Amazon S3 bucket. Multiple teams in the company want to use the customer data for downstream analysis. The company needs to ensure that the teams do not have access to personally identifiable information (PII) about the customers.
Which solution will meet this requirement with LEAST operational overhead?
A) Use an AWS Glue DataBrew job to store the PII data in a second S3 bucket. Perform analysis on the data that remains in the original S3 bucket.
B) Use S3 Object Lambda to access the data, and use Amazon Comprehend to detect and remove PII.
C) Use Amazon Kinesis Data Firehose and Amazon Comprehend to detect and remove PII.
D) Use Amazon Macie to create and run a sensitive data discovery job to detect and remove PII.
3. A company stores daily records of the financial performance of investment portfolios in .csv format in an Amazon S3 bucket. A data engineer uses AWS Glue crawlers to crawl the S3 data.
The data engineer must make the S3 data accessible daily in the AWS Glue Data Catalog.
Which solution will meet these requirements?
A) Create an IAM role that includes the AWSGlueServiceRole policy. Associate the role with the crawler. Specify the S3 bucket path of the source data as the crawler's data store. Create a daily schedule to run the crawler. Specify a database name for the output.
B) Create an IAM role that includes the AmazonS3FullAccess policy. Associate the role with the crawler. Specify the S3 bucket path of the source data as the crawler's data store. Create a daily schedule to run the crawler. Configure the output destination to a new path in the existing S3 bucket.
C) Create an IAM role that includes the AmazonS3FullAccess policy. Associate the role with the crawler. Specify the S3 bucket path of the source data as the crawler's data store. Allocate data processing units (DPUs) to run the crawler every day. Specify a database name for the output.
D) Create an IAM role that includes the AWSGlueServiceRole policy. Associate the role with the crawler. Specify the S3 bucket path of the source data as the crawler's data store. Allocate data processing units (DPUs) to run the crawler every day. Configure the output destination to a new path in the existing S3 bucket.
4. A gaming company uses Amazon Kinesis Data Streams to collect clickstream data. The company uses Amazon Kinesis Data Firehose delivery streams to store the data in JSON format in Amazon S3. Data scientists at the company use Amazon Athena to query the most recent data to obtain business insights.
The company wants to reduce Athena costs but does not want to recreate the data pipeline.
Which solution will meet these requirements with the LEAST management effort?
A) Create an Apache Spark job that combines JSON files and converts the JSON files to Apache Parquet files. Launch an Amazon EMR ephemeral cluster every day to run the Spark job to create new Parquet files in a different S3 location. Use the ALTER TABLE SET LOCATION statement to reflect the new S3 location on the existing Athena table.
B) Change the Firehose output format to Apache Parquet. Provide a custom S3 object YYYYMMDD prefix expression and specify a large buffer size. For the existing data, create an AWS Glue extract, transform, and load (ETL) job. Configure the ETL job to combine small JSON files, convert the JSON files to large Parquet files, and add the YYYYMMDD prefix. Use the ALTER TABLE ADD PARTITION statement to reflect the partition on the existing Athena table.
C) Integrate an AWS Lambda function with Firehose to convert source records to Apache Parquet and write them to Amazon S3. In parallel, run an AWS Glue extract, transform, and load (ETL) job to combine the JSON files and convert the JSON files to large Parquet files. Create a custom S3 object YYYYMMDD prefix. Use the ALTER TABLE ADD PARTITION statement to reflect the partition on the existing Athena table.
D) Create a Kinesis data stream as a delivery destination for Firehose. Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to run Apache Flink on the Kinesis data stream. Use Flink to aggregate the data and save the data to Amazon S3 in Apache Parquet format with a custom S3 object YYYYMMDD prefix. Use the ALTER TABLE ADD PARTITION statement to reflect the partition on the existing Athena table.
5. A data engineer needs Amazon Athena queries to finish faster. The data engineer notices that all the files the Athena queries use are currently stored in uncompressed .csv format. The data engineer also notices that users perform most queries by selecting a specific column.
Which solution will MOST speed up the Athena query performance?
A) Change the data format from .csvto JSON format. Apply Snappy compression.
B) Change the data format from .csvto Apache Parquet. Apply Snappy compression.
C) Compress the .csv files by using gzjg compression.
D) Compress the .csv files by using Snappy compression.
問題與答案:
問題 #1 答案: B,D | 問題 #2 答案: A | 問題 #3 答案: A | 問題 #4 答案: B | 問題 #5 答案: B |
42.72.144.* -
為了讓我順利通過Data-Engineer-Associate考試,朋友給我推薦了Dealaprop網站的考試認證資料。我用了之后實在是太棒了,考試通過了。