購買之前可享有免費試用 CCD-410 考古題
在購買 Cloudera CCD-410 認證考試培訓資料之前,你還可以下載免費的 CCD-410 考古題樣本作為試用,這樣你就可以自己判斷 Cloudera CCD-410 題庫資料是不是適合自己。在購買 Cloudera CCD-410 考古題之前,你可以去本網站瞭解更多的資訊,更好地瞭解這個網站。您會發現這是當前考古題提供者中的佼佼者,我們的 Cloudera CCD-410 題庫資源不斷被修訂和更新,具有很高的通過率。
我們正在盡最大努力為我們的廣大考生提供所有具備較高的速度和效率的服務,以節省你的寶貴時間,為你提供了大量的 Cloudera CCD-410 考試指南,包括考題及答案。有些網站在互聯網為你提供的最新的 Cloudera CCD-410 學習材料,而我們是唯一提供高品質的網站,為你提供優質的 Cloudera CCD-410 培訓資料,在最新 Cloudera CCD-410 學習資料和指導的幫助下,你可以第一次嘗試通過 Cloudera CCD-410 考試。
由專家確定真實有效的 CCD-410 考古題
我們提供給大家關於 Cloudera CCD-410 認證考試的最新的題庫資料,Cloudera CCD-410 題庫資料都是根據最新的認證考試研發出來的,可以告訴大家最新的與 CCD-410 考試相關的消息。Cloudera CCD-410 考試的大綱有什麼變化,以及 CCD-410 考試中可能會出現的新題型,這些內容都包括在了資料中。所以,如果你想參加 Cloudera CCD-410 考試,最好利用我們 Cloudera CCD-410 題庫資料,因為只有這樣你才能更好地準備 CCD-410 考試。
我們的題庫產品是由很多的資深IT專家利用他們的豐富的知識和經驗針對相關的 Cloudera CCD-410 認證考試研究出來的。所以你要是參加 Cloudera CCD-410 認證考試並且選擇我們的考古題,我們不僅可以保證為你提供一份覆蓋面很廣和品質很好的 Cloudera CCD-410 考試資料,來讓您做好準備來面對這個非常專業的 CCD-410 考試,而且還幫你順利通過 Cloudera CCD-410 認證考試,拿到 CCDH 證書。
購買後,立即下載 CCD-410 題庫 (Cloudera Certified Developer for Apache Hadoop (CCDH)): 成功付款後, 我們的體統將自動通過電子郵箱將您已購買的產品發送到您的郵箱。(如果在12小時內未收到,請聯繫我們,注意:不要忘記檢查您的垃圾郵件。)
100%保證通過第一次 CCD-410 考試
Cloudera CCD-410 考古題根據最新考試主題編訂,適合全球的考生使用,提高考生的通過率。幫助考生一次性順利通過 Cloudera CCD-410 考試,否則將全額退費,這一舉動保證考生利益不受任何的損失,還會為你提供一年的免費更新服務。
Cloudera CCD-410 題庫資料不僅可靠性強,而且服務也很好。我們的 Cloudera CCD-410 題庫的命中率高達100%,可以保證每個使用過 CCD-410 題庫的人都順利通過考試。當然,這也並不是說你就完全不用努力了。你需要做的就是,認真學習 Cloudera CCD-410 題庫資料裏出現的所有問題。只有這樣,在 Cloudera CCD-410 考試的時候你才可以輕鬆應對。
這是唯一能供給你們需求的全部的 Cloudera CCD-410 認證考試相關資料的網站。利用我們提供的學習資料通過 CCD-410 考試是不成問題的,而且你可以以很高的分數通過 Cloudera CCD-410 考試得到相關認證。
最新的 CCDH CCD-410 免費考試真題:
1. You need to create a job that does frequency analysis on input data. You will do this by writing a Mapper that uses TextInputFormat and splits each value (a line of text from an input file) into individual characters. For each one of these characters, you will emit the character as a key and an InputWritable as the value. As this will produce proportionally more intermediate data than input data, which two resources should you expect to be bottlenecks?
A) Processor and RAM
B) Processor and disk I/O
C) Disk I/O and network I/O
D) Processor and network I/O
2. When can a reduce class also serve as a combiner without affecting the output of a MapReduce program?
A) When the signature of the reduce method matches the signature of the combine method.
B) Always. The point of a combiner is to serve as a mini-reducer directly after the map phase to increase performance.
C) When the types of the reduce operation's input key and input value match the types of the reducer's output key and output value and when the reduce operation is both communicative and associative.
D) Always. Code can be reused in Java since it is a polymorphic object-oriented programming language.
E) Never. Combiners and reducers must be implemented separately because they serve different purposes.
3. You write MapReduce job to process 100 files in HDFS. Your MapReduce algorithm uses TextInputFormat: the mapper applies a regular expression over input values and emits key-values pairs with the key consisting of the matching text, and the value containing the filename and byte offset. Determine the difference between setting the number of reduces to one and settings the number of reducers to zero.
A) There is no difference in output between the two settings.
B) With zero reducers, all instances of matching patterns are gathered together in one file on HDFS. With one reducer, instances of matching patterns are stored in multiple files on HDFS.
C) With zero reducers, no reducer runs and the job throws an exception. With one reducer, instances of matching patterns are stored in a single file on HDFS.
D) With zero reducers, instances of matching patterns are stored in multiple files on HDFS. With one reducer, all instances of matching patterns are gathered together in one file on HDFS.
4. You want to count the number of occurrences for each unique word in the supplied input data. You've decided to implement this by having your mapper tokenize each word and emit a literal value 1, and then have your reducer increment a counter for each literal 1 it receives. After successful implementing this, it occurs to you that you could optimize this by specifying a combiner. Will you be able to reuse your existing Reduces as your combiner in this case and why or why not?
A) No, because the Reducer and Combiner are separate interfaces.
B) Yes, because the sum operation is both associative and commutative and the input and output types to the reduce method match.
C) No, because the sum operation in the reducer is incompatible with the operation of a Combiner.
D) Yes, because Java is a polymorphic object-oriented language and thus reducer code can be reused as a combiner.
E) No, because the Combiner is incompatible with a mapper which doesn't use the same data type for both the key and value.
5. Which project gives you a distributed, Scalable, data store that allows you random, realtime read/write access to hundreds of terabytes of data?
A) Hue
B) Pig
C) Flume
D) HBase
E) Oozie
F) Sqoop
G) Hive
問題與答案:
問題 #1 答案: C | 問題 #2 答案: C | 問題 #3 答案: D | 問題 #4 答案: B | 問題 #5 答案: D |
210.61.233.* -
非常有效的題庫,我的 CCD-410 考试通過了!這都是因为有 Dealaprop 提供的考古題,使我的 CCD-410 考試變的非常简单。非常感謝你們!